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Figure 1. We propose UnScene3D, a fully-unsupervised 3D instance segmentation method, effectively separating semantic instances
without requiring any manual annotations. We utilize geometric primitives to ensure crisp masks, and due to our self-training loop, we can
also obtain a dense set of predictions, even in cluttered indoor scenarios.

Abstract

3D instance segmentation is fundamental to geometric
understanding of the world around us. Existing methods
for instance segmentation of 3D scenes rely on supervi-
sion from expensive, manual 3D annotations. We propose
UnScene3D, the first fully unsupervised 3D learning ap-
proach for class-agnostic 3D instance segmentation of in-
door scans. UnScene3D first generates pseudo masks by
leveraging self-supervised color and geometry features to
find potential object regions. We operate on a basis of ge-
ometric oversegmentation, enabling efficient representation
and learning on high-resolution 3D data. The coarse pro-
posals are then refined through self-training our model on
its predictions. Our approach improves over clustering-
based alternatives to unsupervised 3D instance segmenta-
tion methods by more than 300% Average Precision score,
demonstrating effective instance segmentation even in chal-
lenging, cluttered 3D scenes.

1. Introduction

The increasing availability of commodity RGB-D sensors,
now widely available on iPhones as well as with the Mi-
crosoft Kinect or Intel RealSense, has enabled consumer-

level capture of 3D geometry of real-world environments.
To enable applications in robotics, autonomous navigation,
and mixed reality in such scenes, semantic 3D scene under-
standing is necessary. In particular, 3D instance segmen-
tation is critical to 3D perception, providing dense instance
mask predictions, thus enabling physical and geometric rea-
soning about objects in an environment. While various
3D deep learning approaches have been developed for 3D
instance segmentation [5, 14, 17, 18, 21, 22, 30, 32, 42–
45, 50–52, 54, 57, 58], they require full supervision from
expensive, manual, dense annotations on 3D scenes.

We introduce UnScene3D, a novel approach designed
for class-agnostic 3D instance segmentation. Our aim is to
identify objects in real-world 3D scans by predicting their
dense instance masks, without any constraints to a prede-
fined set of class categories. Moreover, we avoid expensive
data annotation requirements by operating in an unsuper-
vised fashion, instead leveraging self-supervised 2D and 3D
features for segmentation.

UnScene3D comprises two essential elements. First, we
observe that for RGB-D scan data, self-supervised repre-
sentation learning methods [19, 60] can provide an innate
signal indicating object-ness through feature similarity. We
thus generate pseudo masks over 3D segment primitives,
based on multimodal analysis of self-supervised color and
geometry features from the RGB-D data. By considering
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mesh segments rather than voxels or points, our approach
efficiently scales with high-resolution 3D data in large scene
environments while inherently promoting contiguous seg-
mentation masks. As we require strong features for these
initial coarse estimates, we fuse information from both geo-
metric and 2D color features in a complementary fashion.
Second, following the pseudo mask generation, we train
our model through iterative self-training on both the initial
pseudo masks and the current confident model predictions.
Through multiple rounds of self-training with noise robust
losses achieve improved object recognition and segmenta-
tion. At inference time, we do not require any 2D color
signal and can produce class-agnostic 3D instance segmen-
tation for a new geometric observation of a 3D environment.
Experiments on challenging, cluttered indoor environments
from the ScanNet [10], S3DIS [1] and ARKit [2] datasets
show that UnScene3D improves significantly over unsuper-
vised, clustering-based state of the art. In summary, our
contributions are:
• We propose an unsupervised 3D instance segmentation

approach for indoor RGB-D scans, without requiring any
human annotation.

• We generate sparse 3D pseudo masks for unsupervised
training based on a multi-modal fusion of color and ge-
ometric signal from RGB-D scan data. We achieve ro-
bustness and efficiency through a geometry-aware scene
coarsening.

• Our generated pseudo masks are iteratively refined by
self-training for 3D instances to improve 3D instance seg-
mentation performance.

2. Related Work
Self-supervised 3D pretraining While significant
progress has been made in fully supervised 3D instance
segmentation [8, 14, 16–18, 20, 42, 44, 50, 51] the amount
of densely annotated 3D data is scarce. Inspired by success
in the 2D domain, various 3D pretraining methods have
been developed to boost semantic and instance segmenta-
tion performance when fine-tuning with annotated semantic
labels. Such methods leverage instance discrimination
based on different camera views [19, 60], local augmenta-
tions [62], or multiple LIDAR sweeps [39]. While these
methods can provide powerful 3D feature extraction, they
do not construct any notion of object instances.

Weakly-supervised 3D segmentation Classical methods
have leveraged object template information to match or re-
trieve templates to local geometry in a scene [4, 25, 28,
31, 36, 37], thereby identifying potential object locations.
Other methods formulated 3D dense instance segmentation
with only 3D box annotation [6, 41] or single-point supervi-
sion and active-learning [34, 53]. More recent methods have
focused on exploiting knowledge from powerful pre-trained

vision-language models to inform text-guided queries in 3D
scenes [12, 24, 33, 40, 46]; however, such methods still rely
on large-scale annotated data in the 2D domain.

Clustering-based segmentation There has been very lit-
tle work done in fully unsupervised 3D instance segmen-
tation, but classical clustering methods have been used
to group regions with similar geometric properties to-
gether. A particularly notable approach is the density-
based clustering of DBSCAN [13] and its hierarchical coun-
terpart HDBSCAN [35]. These methods can be used to
group point clusters in a 3D scene based on point nor-
mals and colors. The ScanNet dataset [10] showed that the
Felzenswalb algorithm [15] originally developed for image
over-segmentation, can generate useful geometric segment
clusters. We also exploit such geometric primitives to guide
dimensionality reduction and feature aggregation.

Finally, recent methods have been developed to detect
instances with self-supervised pretrained features in driving
scenarios. These methods often leverage the unique proper-
ties of such data including dynamics and instance sparsity.
Song et. al. [48] identify object instances through motion,
showing promise for self-driving scenarios, but limited to
moving objects. Nunes et. al. [38] additionally propose a
clustering and graph cut based refinement on pre-trained 3D
features, focusing on sparse outdoor scenarios to identify
spatially separate objects. Our solution aims to segments
instances in complex, cluttered indoor environments.

Unsupervised 2D instance segmentation Classical
graph-cut algorithms [7, 11, 47, 59] can be used to detect
objects in scenes, employing low-level feature cluster-
ing to identify self-similar regions. Recent advances in
self-supervised feature learning have been employed in
2D unsupervised instance segmentation methods, which
use two-stage training pipelines to achieve remarkable
segmentation results [55, 56]. These methods first generate
a set of coarse pseudo masks building on the insights of
graph-cut algorithms and then refine them with a series
of self-training iterations. In particular, FreeSolo [55]
uses multi-branch feature extraction to obtain self-similar
regions as mask proposals, producing a dense set of initial
pseudo-annotated instances. CutLER [56] uses the normal-
ized cut (NCut) algorithm [47] with deep self-supervised
features from DINO [3] to identify multiple prominent
regions as pseudo masks. Inspired by such approaches we
also leverage pseudo mask generation and self-training, but
to handle high-dimensional, noisy real-world 3D scan data,
we employ a multi-modal feature reasoning and geometric
graph coarsening for robust unsupervised 3D instance
segmentation.



3. Method

Problem definition We propose an unsupervised
learning-based method for 3D instance segmentation. We
operate on a set of training 3D scenes {Xi}nt

i=1, represented
as mesh graphs G = (V,E), of vertices V and triangular
face edges E, where each scene Xi contains an unknown
set of ni objects in the ith scene. We aim to train a model
that can predict for a previously unseen input scene X , a
set of 3D masks representing the different object instances
in that scene.

Method overview In order to achieve unsupervised 3D
instance segmentation we first break down the scenes into
N geometric primitives SN , which we use to initialize
an adjacency matrix W to extract an initial set of pseudo
masks M0, representing instance hypotheses based on com-
bining 2D and 3D inputs F2D / F3D ∈ RN×D2D/3D ,
where D2D, D3D are the dimensions of the 2D/3D self-
supervised features. We regularize the per-segment simi-
larities over geometric primitives for mitigating noise and
enabling efficient 3D reasoning. We then employ a series of
self-training cycles, updating pseudo mask supervision with
new predicted masks, in order to produce final 3D instances.
An overview of our approach is shown in Figure 2.

3.1. Initial pseudo mask generation

In order to initiate self-training, we first generate an initial
set of pseudo masks, leveraging complementary informa-
tion from 2D and 3D signal in {Xi}.

3.1.1 Feature aggregation

To encourage effective initial pseudo mask generation, we
employ joint reasoning across both self-supervised color
and geometry features, as they can provide complementary
information regarding objects. As RGB-D scans often con-
tain color image information and reconstructed 3D scan ge-
ometry, we can associate both 2D and 3D features in 3D by
back-projecting the 2D extracted features using the corre-
sponding depth and camera pose information for each im-
age. Both 2D and 3D features are extracted through state-
of-the-art self-supervised feature learning methods [3, 19].
As real-world camera estimation often contains small mis-
alignment errors and noise or oversmoothing in recon-
structed scan geometry, these self-supervised features can
often also contain high-frequency noise, which we address
in Sec. 3.1.2 when reasoning over these features. Note that
while we employ both 2D and 3D signal when available for
training, we do not require any aligned color image inputs
for inference, enabling more general applicability.

3.1.2 3D Graph Cut

To generate pseudo masks from the 2D and 3D self-
supervised features, we employ graph cut to estimate class-
agnostic instances from the background. More precisely,
we leverage the principle of Normalized Cut [47] (NCut),
which employs eigenvalue decomposition from an adja-
cency matrix W ∈ RN×N over a graph to identify self-
similar regions potentially representing semantic instances,
where a set of potential instances can be extracted itera-
tively. Given a graph representing the 3D scene, we build
an adjacency matrix W and self-supervised features with a
corresponding degree matrix D ∈ RN×N , where D(i, i) =
ΣjW (i, j) and (D − W )v = λDv. In this system, find-
ing the second smallest eigenvalue λ and its corresponding
eigenvector v is a close approximation for the minimized
cost. From v, we obtain foreground separation by taking
all node activations where the eigenvector components were
larger than their mean. To identify multiple foreground ob-
jects, this process is repeated iteratively.

Unfortunately, applying this approach directly to the 3D
scenes {Xi} in common 3D representations such as voxels
or points is not only computationally infeasible, but unre-
liable due to the noise in camera pose estimation and geo-
metric reconstruction of 3D scan data. Thus, we propose to
regularize the graph cut across geometric primitives.

3.1.3 Geometric Primitives

To employ efficient reasoning across high-dimensional 3D
data and enable robust 3D regularization of noisy features,
we propose to operate on geometric primitives acquired
through a graph coarsening process. For a 3D scene Xi

we construct the graph G = (V,E) where V and E being
the mesh vertices and face edges. Then, nodes with simi-
lar normals and colors are aggregated and clustered based
on the mesh topology following [15] and resulting in a set
SN = {C1 . . . CN} and

⋃
(SN ) = V where Cn represent

a single primitive. This reduces the graph size by multiple
orders of magnitude, and enables effective regularization of
noise in the used self-supervised 2D and 3D features.

3.1.4 NCut on Geometric Primitives

After addressing the challenge of dimensionality reduction
and effectively mitigating speckle noise in our features us-
ing geometric primitives, we can leverage the capabilities
of the Normalized Cut algorithm to achieve a clean par-
titioning of scene graphs. For this, we iteratively apply
NCut to our aggregated features for the extraction of ini-
tial pseudo masks denoted as M . Starting with an empty
set M0 = {}, we iteratively compute the adjacency ma-
trix over SN and retrieve the masks m ⊂ SN . We start
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Figure 2. UnScene3D first generates a set of pseudo masks (top) to initiate self-training (bottom) for unsupervised 3D instance segmenta-
tion. We leverage features from 3D self-supervised pre-training in combination with 2D self-supervised features on an input mesh. These
multi-modal features are then aggregated on geometric primitives, integrating low- and high-level signals for pseudo mask segmentation.
These initial pseudo masks are then used as supervision for a 3D transformer-based model to produce updated instance masks that are
integrated into the supervision of multiple self-training cycles. Finally, we obtain clean and dense instance segmentation without using any
manual annotations.

from N geometric segments with their corresponding D-
dimensional features F ∈ RN×D, and construct the simi-
larity matrix A = sim(F), where sim denotes cosine sim-
ilarity. Additionally, for the multi-modal setup we calculate
similarity matrices A2D and A3D independently and take
their weighted average to obtain the final scores. Empiri-
cally, we found this to be more robust than direct feature
fusion of the different modalities, due to their different sta-
tistical characteristics. We obtain Wj introduced in Sec-
tion 3.1.2 by thresholding A at τcut, where j denotes the jth

NCut iteration. Using Wj , we solve for the second eigen-
vector vj and threshold it to retrieve the partition mj . We
keep all separated foregrounds in M0, where for each up-
coming iteration, we mask out the row and column vectors
from Wj , where mi ∈ M0 was already accepted as a fore-
ground instance and i being the previous segment ids. This
allows greedy separation of instances in order of confidence
in every cut iteration. Examples of our generated pseudo
masks are visualized in Figures 5 and 6.

As the adjacency graph is unaware of the mesh connec-
tivity, NCut often results in masks that span spatially sepa-
rated scene regions. In 3D, we can leverage knowledge of
physical distance and connectivity of G to constrain masks
to be contiguous in the coarsened scene connectivity graph.
We thus filter masks mj that have separated components,
keeping only the parts m̃j that contain the item with the
maximum absolute value in vj . Separation based on con-
nectivity is performed before saving m̃j into M0, thus al-
lowing for repeated detection of the dropped part over the

next NCut iterations. Finally, we iterate until the maximum
number of instances M0 = {mi}Nm

i=1 are obtained, or there
are no segments left in the scene. Moreover, we favor gen-
erating a reliable set of masks at the cost of restricting to a
sparse initial set (i.e., missing potential instances rather than
generating noisy masks for them) through a stricter τcut or
lower number of instances.

3.2. Self-Training

Our initial pseudo masks can provide a set of proposed in-
stances M0; however, these pseudo masks are quite sparse
in the scenes and sometimes over- or under-split nearby in-
stances. We thus refine the pseudo mask data through an
iterative self-training strategy, producing final instance seg-
mentation predictions M ′ with more dense and complete
instance proposals.

We leverage a state-of-the-art 3D transformer-based
backbone [45] for our self-training from pseudo mask data
as mask-head supervision, while the class-head is collapsed
to foreground and background classes. Through multiple
training cycles we save the proposals of the tth iteration
into M t, from the self-trained model, and save these masks
as an extension to the original pseudo dataset obtaining
M t ⊇ M0. From the second training iteration, we can ex-
tract the most confident K predictions and sample these new
instance proposals as an addition to the pseudo annotations.
Further, we only accept new instances if the added informa-
tion value is larger than the minimum threshold, measured
by simple segment IoU scores. This way, we can effectively



densify the originally sparse annotations, but without limit-
ing the quality of the originally clean pseudo masks.

3.3. Implementation Details

Backbones. We use a Res16UNet34C sparse-voxel UNet
implemented in the MinkowskiEngine [8] for 3D pre-
trained feature extraction as well as for the 3D transformer
during self-training. For the pretrained features we use our
own trained weights of [19] for compatibility reasons.

Self-training. We employ the 3D transformer architecture
of [45], initialized from scratch. The first self-training cycle
is trained for 600 epochs with a batch size of 8 until con-
vergence, which takes ≈ 3 days on a single NVIDIA RTX
A6000 GPU. Further self-training cycles are all initialized
from the previous state and finetuned for an additional 50
epochs in ≈ 4 hours and for a total of 4 training cycles to
produce the final set of instance predictions S. For the Hun-
garian assignment, we take the original weighted combina-
tion of dice and binary cross-entropy losses and only apply
the DropLoss condition in the backpropagation phase.

4. Experiments
We demonstrate the effectiveness of UnScene3D for unsu-
pervised class-agnostic 3D instance segmentation on chal-
lenging real-world 3D scan datasets containing a large di-
versity of objects and significant clutter. We train our
method and all learned baselines on ScanNet [10], using
the official train split. Note that no semantic annotation data
is used for training, only the RGB-D reconstructions. Ad-
ditionally, we show that our approach trained on ScanNet
data can effectively transfer to class-agnostic 3D instance
segmentation on ARKitScenes [2] data.

Datasets. We train and evaluate UnScene3D on RGB-D
scan data from ScanNet [10], using the official train split.
We use the raw RGB images, and registered camera poses
for training our approach, while the semantic annotations
are used only for evaluation. We use the official ScanNet
train split for both the pre-trained 3D features from [19]
and our self-training iterations. We additionally evaluate
our method on ARKitScenes [2], on an 884/120 train/test
split of indoor LIDAR scans. For ARKitScenes, we use
3D pre-trained features from ScanNet, followed by pseudo
mask generation and self-training on the ARKitScenes train
scenes. We convert the LIDAR scan data to meshes with
Poisson Surface Reconstruction [26, 27] prior to our graph
coarsening. Note that all baselines using learned features
are trained on the same ScanNet data as ours.

Evaluation metrics. We evaluate class-agnostic 3D in-
stance segmentation performance with the widely-used Av-
erage Precision score on the full-resolution mesh vertices.

ScanNet AP@25 AP@50 AP

HDBSCAN [35] 32.1 5.5 1.6
Nunes et al. [38] 30.5 7.3 2.3
Felzenswalb [15] 38.9 12.7 5.0
CutLER Projection [56] 7.0 0.2 0.3
Ours 58.5 32.2 15.9

Table 1. Unsupervised class-agnostic 3D instance segmentation on
ScanNet [10]. Our approach improves significantly over baselines
(3x improvement in AP) due to our pseudo mask generation and
self-training strategy.

Following the strategy of the supervised benchmark [10]
we report scores at IoU scores of 25% and 50% (AP@25,
AP@50) and averaged over all overlaps between [50% and
95%] at 5% steps (AP). Note that since predictions are
class agnostic, all methods evaluate only instance mask AP
values without considering any semantic class labels. For
ScanNet, we evaluate against ground truth instance masks
from the established 20-class benchmark. Since ARK-
itScenes does not contain any ground truth instance mask
annotations, we evaluate all methods qualitatively.

Comparison to the state of the art. We evaluate our
approach in comparison to state-of-the-art traditional clus-
tering methods HDBSCAN [35] and Felzenszwalb’s algo-
rithm [15], in addition to the unsupervised approach of
Nunes et. al. [38] leveraging learned feature clustering and
refinement. All baselines are provided with input mesh ver-
tices, colors, and normals, while our approach and Nunes et.
al. also operate on sparse voxel scene representations. Ta-
ble 1 and Figure 3 show comparisons on ScanNet data; our
UnScene3D approach improves significantly over state of
the art by effectively leveraging signal from self-supervised
3D features to guide our model through self-training. Note
that since Nunes et. al. has been designed for outdoor ap-
plications, even while leveraging ScanNet-trained features,
it uses ground removal and relies on physical object separa-
tion, making segmentation difficult in cluttered scenes.

Additionally, we demonstrate the importance of reason-
ing in 3D, and compare with a state-of-the-art unsupervised
2D instance segmentation approach CutLER [56] run on the
RGB frames of the scans, and projected to 3D using the cor-
responding camera poses. Here, the difficulty lies in resolv-
ing view inconsistencies, occlusions, and lack of knowledge
of geometric structure resulting in poor 3D segmentation
performance despite plausible 2D proposals.

Evaluation on other datasets We quantitatively evaluate
UnScene3D on the Area 5 of the S3DIS dataset [1] using
only 3D features pretrained on [10]. Comparison with 3D-
only state-of-the-art can be seen in Table 2.

We additionally compare with state of the art on ARK-
itScenes [2] data in Figure 7. Here we show only qualitative



Figure 3. Qualitative comparison on ScanNet [10] scenes with projected predictions from the 2D method CutLER [56], traditional
clustering-based methods Felzenszwalb [15] and HDBSCAN [35], and the GraphCut-based cluster refinement method [38]. Our ap-
proach leverages strong pseudo mask prediction and a self-training strategy to produce cleaner, more accurate instance segmentation.



S3DIS AP@25 AP@50 AP

HDBSCAN [35] 27.9 11.2 5.0
Felzenswalb [15] 23.5 10.7 5.0
Nunes et al. [38] 20.1 10.5 5.5
Ours 52.6 40.3 21.4

Table 2. Evaluation on S3DIS dataset (Area 5). UnScene3D is
able to adapt to other datasets as well and shows a significant im-
provement over previous SOTA methods.

results due to the absence of ground truth instance mask an-
notations. UnScene3D effectively produces cleaner, more
accurate segmentations in these complex environments.

UnScene3D as data-efficient pretraining UnScene3D is
able to learn powerful object properties and dense segmen-
tation even in a fully unsupervised fashion. We demonstrate
the potential of our strong learned features for downstream
3D instance segmentation with limited annotated data. We
follow the setup introduced by CSC [19] with limited recon-
structions available for downstream fine-tuning. We show
our method as a strong pretraining strategy in Figure 4, no-
tably outperforming both training from scratch as well as
the state-of-the-art 3D pretraining of CSC. For more details
we refer to our supplementary material.

Figure 4. Our unsupervised self-training produces strong 3D fea-
tures that can served as a powerful pretraining strategy for 3D in-
stance segmentation in limited data scenarios. UnScene3D sig-
nificantly outperforms state-of-the-art self-supervised 3D pretrain-
ing [19] on ScanNet instance segmentation.

What is the effect of multi-modal signal for pseudo mask
generation? We evaluate the effect self-supervised color
and geometry signals for generating pseudo annotations in
Table 3. We consider using only self-supervised geomet-
ric features (3D), only self-supervised color features (2D)
that are projected to the 3D scans, and both together (both).
We find that the color and geometry provide complemen-
tary signals. We also note that color features are only used
for the initial pseudo mask generation, during self-training
iterations and test time only 3D features were used.

Modality AP@25 AP@50 AP AP Final

FreeMask 3D 14.4 3.6 1.3 2.0
Ours 3D 45.4 16.7 9.2 13.3

FreeMask 2D 31.1 15.1 6.8 13.8
Ours 2D 51.3 21.8 9.4 15.7

FreeMask both 23.7 10.1 5.7 12.1
Ours both 52.9 23.2 10.4 15.9

Table 3. We compare pseudo mask generation from 3D-only fea-
tures (3D), color-only features (2D), and both color and geometry
(both) signal, as well as with pseudo annotation generation algo-
rithm FreeMask [55]. In this table we report method performances
after a single iteration of self-training initialized from the different
pseudo annotation methods and the final AP scores after 4 self-
training iterations.

Figure 5. Initial pseudo masks generated by UnScene3D in com-
parison with a 3D-lifted FreeMask [55]. FreeMask tends to pro-
duce a larger set of noisier pseudo masks, while we rely on a
cleaner but sparser set for our self-training.

What is the effect of pseudo annotations? We also eval-
uate the effect of our pseudo mask generation in Table 3
and Figure 5, in comparison to the 3D adaptation of the
FreeMask [55] approach operating on our geometric seg-
ments. FreeMask tends to estimate a larger but noisier set
of initial pseudo masks, while our approach is focusing on
a sparser set of more reliable pseudo masks and produces
significantly better performance. The strong difference in
performance can be explained by the nature of the samples.
While a sparser set of examples can be extended with multi-
ple iterations of self-training, noisy samples will propagate
through the full pipeline, and thus directly degrade the fi-
nal performance. Further details of our adaptations of the
FreeMask 3D method can be found in our supplemental.

What is the impact of self-training? We observe that
while self-training iterations are always improving the qual-
itative performance, their effective added information value
is saturating after a limited number of cycles. We report on
Table 4 through the first 4 steps, and observe a significant
relative improvement in both modalities.



Figure 6. UnScene3D employs self-training to refine the initial
sparse set of proposals. We can see consistent improvement over
both the number of predicted instances and the quality of the in-
stance masks. Here we show results using the pseudo annotations
obtained from both modalities.

3D Only 3D & 2D

AP@25 AP@50 AP AP@25 AP@50 AP

S0 pseudo masks 13.8 4.7 2 19.9 10.0 5.9
1st Self-train 45.4 16.7 9.2 52.9 23.2 10.4
2nd Self-train 50.0 24.1 12.0 56.5 29.8 15.0
3rd Self-train 52.2 25.8 12.8 58.8 31.9 15.9
4st Self-train 52.7 26.2 13.3 58.5 32.2 15.9

Table 4. Multiple iterations of self-training significantly improve
performance, saturating around 4 iterations.

Limitations While UnScene3D offers a promising step
towards unsupervised 3D instance segmentation, various
limitations remain. We rely on a mesh representation for
graph coarsening, but believe this could be extended to al-
ternative representations through neighborhood reasoning.
Additionally, our graph coarsening step may cause very
small objects (e.g., pens, cell phones) to be missed in the
pseudo annotation generation. Finally, employing a fixed
set of pseudo masks from the initial stage that are used

Figure 7. As UnScene3D does not require any human annotation,
so we can also train and test our method on the ARKitScenes [2]
dataset. We leverages 3D features followed by a series of self-
training iterations for cleaner, more accurate instance segmenta-
tion. Qualitative results shows consistently better results than our
baselines.

through self-training could reinforce noisy predictions.

5. Conclusion

We introduced UnScene3D, a novel approach towards
achieving fully-unsupervised 3D instance segmentation in
cluttered indoor scenes. Our approach effectively combined
low-level geometric properties to regularize multi-modal
self-supervised deep features for initial pseudo mask extrac-
tion, and our self-training notably improved performance
by refining these proposals to a more complete, dense set of
instances. As 3D instance segmentation is a crucial aspect
of 3D scene understanding, UnScene3D’s ability to achieve
this without requiring any manual annotations opens up new
possibilities for 3D semantic understanding.
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7. Appendix

7.1. UnScene3D as Data Efficient Pretraining

We report additional qualitative details on the data efficient
pretraining performance of UnScene3D in Table 5.

We also note that the 3D contrastive pre-training of CSC,
similar to other 3D pre-training methods developed for non-
transformer backbones [19, 39, 60, 62], was not beneficial
for a transformer-based model. A similar observation was
also reported in a recent pretraining method [20]. We thus
also compare with CSC pretraining on their original 3D
backbone (which demonstrated improvement over training
from scratch on the same backbone). Our approach can im-
proves notably over both alternatives.

7.2. The effect of noise robust losses.

We adopt DropLoss [56] for our self-training cycles, which
is robust to sparse data and missing annotations. In partic-
ular, we use a weighted combination of cross-entropy and
Dice [49] losses for bipartite-matching with pseudo anno-
tations. We then drop losses for backpropagation which do
not have at least τdrop overlap with the annotations from
the previous cycle. We evaluate the effect of different noise
robust losses for self-training in Table 6. We compare our
baseline losses with a 3D extension of the projection loss
of [55], and our adaptation of DropLoss from [56]. Our ap-
proach does not penalize for missing pseudo masks, which
enables more effective self-training to discover previously
missed instances.

7.3. Additional Qualitative Results

We show more qualitative results from our method trained
on ARKitScenes [2] in Figure 8 and on ScanNet [10] in
Figure 9.

7.4. Pseudo Mask Generation Ablations

We also ablate the saliency threshold, oversegmentation pa-
rameters, and separation strategy in our pseudo mask gen-
eration. If not explicitly stated otherwise in Table 12, we
use both 2D and 3D modality features for the pseudo mask
generation.

What is the effect of the saliency threshold in pseudo
mask generation? We threshold the saliency matrix A
with τcut = 0.55 for geometric-only features and τcut =
0.65 for combined modalities. Table 7 shows that our ap-
proach maintains robust performance across a large range
of τcut thresholds used to estimate salient areas for pseudo
masks. In this table we report results using features from
combined modalities, but similar behaviour can be observed
for the other scenarios as well.

The effect of iterative mask densification. We designed
a strategy to leverage a sparse set of relatively clean initial
pseudo masks, which are progressively extended with con-
fident self-predictions during later iterations. This leads to
a 3x improvement over state of the art in the Average Preci-
sion Metric. We could also consider different mask refine-
ment strategies using a mixture of segments, initial masks
or self-trained instances. Tab. 8 ablates a mask refinement
strategy of discarding previous masks and retaining current
predictions. We also consider using Felzenswalb segments
directly instead of feature-based pseudo labels. Both these
strategies lead to lower performance due to the increased
presence of noisy labels, which dominate the training sig-
nal.

Robustness to oversegmentation parameters. Table 9
shows that our approach maintains strong robustness to a
wide range of oversegmentation parameters for our geomet-
ric segments (our used parameters denoted in bold).

Additional pseudo mask generation hyperparameters.
Additionally, we also test the effect of other hyperparam-
eters in out NCut-based pseudo mask generation module,
including used distance metrics in the similarity matrix and
different methods to separate unconnected patches in the
predicted foregrounds. During the foreground separation in
the Normalized Cut algorithm, we had an additional condi-
tion for the minimum number of foreground segments for
the bipartitions. This conditions was able effectively filter
out suboptimal partitioning of the full graph leading to sepa-
rated parts from the full instances. Reducing the size of this
parameter can directly lead to a more dense set of initial
pseudo masks, with the cost of higher false positive rate.
In Table 9 we report a sparser and denser version of the
datasets with a minimum number of foregorund segments
of 8 and 2 accordingly, and show the initial higher scores
of the pseudo annotation doesn’t necessarily propagate to
better downstream self-trained performance.

Finally, we also ablate the effect of our physical
connectivity-based foreground separation introduced in
Section 3.1. In our main method we separate all set of
connected components in the foreground, but only keep the
component with the highest eigenvector activation (Max).
As an alternative we also test a method where we calculate
the highest average activation in the connected component
(Avg.), a method where we keep the component with the
largest surface value (Largest) and finally, to test the effect
of this module, without any kind of connectivity-based sep-
aration (No Sep.).

7.5. Comparison with methods from the 2D domain

To ensure a fair evaluation of methods operating on different
input domains in Table 1. we followed the established pro-
cedure of well-known baselines [9, 18, 23]. This involves



Figure 8. Additional results on the ARKitScenes dataset [2], compared to geometric clustering and oversegmentation-based baselines.



Figure 9. Additional results on the ScanNet dataset [10], compared to geometric clustering and oversegmentation-based baselines.



1% 5% 10% 20% 50%

Model Backbone AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP

Scratch Bottom-up 22.6 14.1 6.8 45.5 33.3 18.1 54.8 39.2 21.9 61.0 43.4 25.5 67.0 51.4 30.3
CSC [19] Bottom-up 35.6 22.1 12.5 52.7 39.9 23.3 59.8 43.8 25.0 63.8 48.9 29.6 70.5 56.0 33.6
Scratch Transformer 24.7 9.3 4.6 48.1 27.6 16.3 59.2 39.1 23.4 66.4 49.6 33.1 78.9 67.5 49.8

CSC Transformer 17.0 6.8 3.8 44.2 22.7 13.1 55.2 32.3 19.1 62.0 41.2 26.0 73.7 58.2 40.0
Ours Transformer 43.5 28.4 15.8 63.2 46.8 28.3 70.3 55.7 36.7 72.4 60.7 41.5 78.9 68.0 48.2

Table 5. Unsupervised class-agnostic pretraining with our method can also act as a powerful pretraining strategy, advancing over state
of the art. We report pretraining with CSC [19] and UnScene3D, and evaluate the downstream weakly-supervised instance segmentation
performance on ScanNet with percentage of limited annoated scenes used denoted in the top row. As we found that CSC degraded
performance when using a transformer-based backbone, we also report the performance of training from scratch and CSC on their originally
proposed backbone of a sparse UNet with bottom-up voting.

AP@25 AP@50 AP AP Final

Initial Pseudo Masks 19.9 10.0 5.9 -
Baseline losses [45] 42.3 16.9 7.2 14.2
Projection loss [55] 35.7 12.1 4.7 7.2
DropLoss [56] 52.9 23.2 10.4 15.9

Table 6. A 3D projection loss struggles with under-determined as-
sociations, while DropLoss helps UnScene3D to discover parts of
the scene that were missed by the source supervision. We report
all metrics after a single iteration and the AP scores after 4 itera-
tions of self-training.

τcut AP@25 AP@50 AP

0.40 16.7 9.0 5.2
0.50 20.8 10.7 5.7
0.55 21.0 10.8 5.7
0.60 21.3 11.3 5.8
0.65 19.9 10.0 5.9
0.70 18.2 9.9 5.6
0.80 11.8 5.0 2.6

Table 7. Our pseudo mask generation quality, as measured by AP
metrics, maintains robustness to a large range of τ thresholds that
extract saliency. Note that this measures the quality of only the
pseudo masks; our full approach with self-training produces sig-
nificantly improved results. In this table we show results and pa-
rameters used by our method in bold and report pseudo mask per-
formance generated from both modalities.

using depth information to project 2D predictions into 3D
such that all methods are evaluated in the same 3D do-
main and aggregate multiple predictions through consensus
by majority voting or accepting the maximum confidence
scores for every voxel location. We also show results evalu-
ated against 2D ScanNet images by projecting our method’s
predictions into 2D in Tab. 10, and comparing it to the cur-
rent state of the art 2D unsupervised segmentation method
[56] which demonstrates the usefulness of 3D reasoning.s

We also compare to weakly-supervised instance segmen-
tation method SAM3D [61], where powerful class-agnostic

AP@25 AP@50 AP

Felzenswalb Masks 35.5 20.6 10.3
Mask Refinement 43.7 24.4 12.4
Mask Addition (Ours) 58.6 32.0 16.0

Table 8. Instead of using masks from previous iteration directly
it is the best to keep the initial masks fixed, and iteratively sam-
ple plausible predictions to enrich the pseudo dataset during self-
training. This method strikes a balance between relatively clean,
but sparse labels and increasing number of confident samples. Fi-
nally, even though Felzenswalb oversegmentation yields to higher
precision, then our initial mask prediction algorithm, it also in-
cludes more background into the training, and this way plateauing
at a lower self-training performance.

2D masks are extracted by the powerful SAM model [29].
Here the projected 2D masks are merged into 3D masks iter-
atively with a bottom-up bidirectional merging approach to
achieved cleaner and more view-independent 3D instances.
A qualitative comparison on ScanNet can be seen in Table
11, with qualitative comparisons in Figure 10.

Figure 10. While SAM has powerful capabilities in crisp 2D
mask generation, when aggregated on 3D, SAM3D tends to over-
segment object instances.

SAM3D must resolve view inconsistencies and SAM’s
tendency to over-segment objects, which results in SAM3D
splitting instances, while UnScene3D is able to achieve
complete masks through multi-modal reasoning. We be-
lieve integrating SAM or other (weakly-) supervised 2D
models into our pipeline to enable multi-modal reasoning
is an interesting avenue for future work.

7.6. Additional Implementation Details

Here, we further explain the implementation details of our
pseudo mask generation.



Generation Params. Initial Pseudo Mask 1 Iteration of Self-Training 4 Iterations of Self-Training

Segment Size Metric Separation Min. # of Foreground # of Instances AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP

30 Cos Max 8 2169 21.9 11.5 6.3 53.7 26.2 12.4 55.4 30.3 15.3
50 Cos Max 8 1414 19.9 10.0 5.9 52.9 23.2 10.4 58.5 32.2 15.9

100 Cos Max 8 1090 17.4 8.0 4.2 33.1 10.2 3.9 39.6 13.7 5.3
200 Cos Max 8 584 11.0 3.7 1.8 24.3 8.7 2.1 26.1 9.7 2.4
400 Cos Max 8 319 6.4 2.5 1.1 19.1 3.9 1.2 19.9 3.2 1.0

50 L2 Max 8 1539 20.1 10.6 5.4 49.0 21.7 9.8 55.3 38.4 14.3
100 L2 Max 8 805 13.3 5.3 2.6 30.8 8.3 2.8 39.0 12.7 5.0

50 Cos No Sep. 8 125 4.3 0.3 0.1 4.3 0.5 0.2 4.9 0.6 0.2
50 Cos Largest 8 620 11.5 4.9 2.5 11.5 1.5 0.4 12.9 2.2 12.9
50 Cos Avg. 8 1078 16.8 9.1 5.1 36.4 12.5 4.9 43.8 17.8 7.5

30 Cos Max 2 2909 29.0 15.6 8.7 53.6 28.6 14.2 54.2 29.8 15.4
50 Cos Max 2 2512 24.9 12.4 7.2 56.5 29.8 15.0 51.3 26.2 12.6

100 Cos Max 2 2317 23.1 12.3 6.8 51.8 24.4 11.6 57.1 31.3 15.6
200 Cos Max 2 2181 28.4 15.5 8.9 54.6 28.7 13.7 56.6 31.4 15.6
400 Cos Max 2 1373 20.6 11.1 6.3 51.0 24.8 11.8 55.8 30.3 15.2

50 L2 Max 2 2496 28.6 15.8 9.0 55.8 29.6 14.6 54.8 30.3 15.3
100 L2 Max 2 1668 23.4 12.7 7.3 53.1 25.0 11.3 56.3 27.7 12.9

50 Cos No Sep. 2 159 0.2 0.5 3.6 5.4 0.6 0.3 3.9 0.4 0.2
50 Cos Largest 2 1026 14.1 7.2 3.9 11.5 1.8 0.5 14.5 2.5 0.7
50 Cos Avg. 2 2053 23.3 12.0 6.8 52.5 27.4 12.7 54.9 29.9 14.9

Table 9. We denote the parameters used by our method in bold. We show that our method is robust to a wide range of numbers regarding
segments sizes and different similarity metrics, and only degrades somewhat in performance when segments are constrained to be too
large. We also show that the separation of physically distant foreground patches is important and it is beneficial to use the activation of the
eigenvector for the best results. Finally, we show that denser initial mask predictions lead to quantitatively better initial pseudo annotations,
and even better self-training performance after a single iteration, but underperforming in their final scores. This behaviour can be explained
by the larger false positive ratio in the denser initial predictions, which is propagating through all iterations, but thanks to the noise robust
losses and iterative refinement of predictions the sparse set of labels can be effectively used. In this table we report results using both
modalities for the initial pseudo mask generation, and number predicted pseudo instances in the official validation split of the ScanNet
dataset.

AP@25 (2D) AP@50 (2D) AP (2D)
CutLER (2D) 7.8 2.8 0.7
Ours (projected) 60.0 38.1 21.1

Table 10. 2D evaluation on ScanNet images.

AP@25 AP@50 AP

SAM3D 37.2 11.8 3.7
SAM3D with GT Segments 47.6 24.1 10.8
Ours 58.5 32.2 15.9

Table 11. UnScene3D achieves significantly better performance
on ScanNet than SAM3D through our strong multi-modal reason-
ing.

Pseudo code for masked NCut We show the pseudo
code-style implementation for the masked normalized cut
algorithm generating multiple instances as pseudo masks.
The full algorithm can be seen in 1.

3D Adaptation of FreeMask We also evaluate an al-
ternative pseudo mask segmentation algorithm besides the
masked NCut method. In the 2D domain FreeSOLO
[55] also followed a two stage pipeline first generating
the pseudo annotations, and then refine those predictions
through a series of self-training cycles. We followed their
intuition to take a self-supervised pretrained backbone and

extract it’s deep features at multiple levels of the decoder.
While in standard pretrained UNet-style models early fea-
tures represent global context, final features and local se-
mantic meaning, intermediate features can act as an useful
proxy to extract self-similar regions in the input samples. In
our implementation we used the same backbone features of
[3, 19] for the same 2D-3D setup and extracted the penulti-
mate layer features for the self-similarity calculation. Then
sampled the feature space with the Furthest Point Sampling
[42] strategy to get a more limited set of anchor points, later
used to extract self-similar regions. For every seed point
we took similarity scores with the other features of the full
scene and thresholded it to extract salient regions. Finally,
we used the efficient Non Maximum Suppression imple-
mentation from [55] to sort the predicted salient areas and
filter out overlapping regions. We also used average sim-
ilarity score combined with the salient region area to get
maskness scores for every salient region, directly following
the original implementation. We report comparative results
of the masked NCut algorithm and our FreeMask 3D adap-
tation after self-training in Table 3. of the main paper and
in Table 12 of the initial pseudo mask scores.

We also note here that while there is a difference in the
initial pseudo mask qualities for the different methods, the



Algorithm 1: Masked NCut on 3D segments

Data: S = {si, . . . , sN}, F ∈ RNxD,
C = {(s1, sk), (s1, sl), . . . }

Result:M = {mj , . . . ,mM}
1 M← {}
2 while j ≤ max inst num do
3 F ′ ← F
4 F ′[M]← 0. // Mask out previous insts.

5 W ← F ×FT // Feature similarity

// Saliency with connected graph

6 Wi,k =

{
1. ifWi,k ≥ τcut
ϵ ifWi,k < τcut

7 Di,i =
∑

k Wi,k

// Get 2nd smallest eigenvector

8 λ,v← eigh(D −W,D,−2)

9 mi =

{
1 if vi ≥ mean(v)
0 if vi < mean(v)

// Invert bipartition if too large

10 if sum(m) > D/2 then
11 m = 1−m
12 v = −1. ∗ v

// Separate unconnected components

13 vmax = max(v)
14 m̃ = sep(v, vmax, C)
15 M ←M ∪ {m̃}

Modality AP@25 AP@50 AP

FreeMask 3D 13.7 7,2 3.7
Ours 3D 13.8 4.7 2.0

FreeMask 2D 15.3 6.6 2.9
Ours 2D 15.6 7.2 3.6

FreeMask both 17.9 7.5 3.7
Ours both 19.9 10.0 5.9

Table 12. We compare pseudo mask generation from 3D-only fea-
tures (3D), color-only features (2D), and both color and geometry
(both) signal, as well as with pseudo annotation generation algo-
rithm FreeMask. We compare the quality of the initial pseudo
mask dataset using our masked NCut algorithm and the adaptation
of FreeMask [55] to 3D. We see that the normalized cut-based
method is superior for both modalities.

downstream performance is way more significant. This can
explained by the nature of the pseudo masks. NCut provides
a clean and sparse set of annotation, which is easy to den-
sify for following iterations. On the other hand, the more
dense, but noisy FreeMask predictions remain in the train-
ing for the duration of the whole training, hindering the per-
formance of the self-trained model with noisy supervision.
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